Tinjauan Pustaka | Studi Kasus | Identifikasi | Karya | Referensi | Arsitektur dan Lainnya
Monday, May 12, 2014
TEKNOLOGI BAHAN BETON BERTULANG
Latar Belakang
Beton adalah suatu campuran yang terdiri dari pasir, kerikil, batu pecah, atau agregat-agregat lain yang dicampur menjadi satu dengan suatu pasta yang terbuat dari semen dan air membentuk suatu massa mirip-batuan. Terkadang, satu atau lebih bahan aditif ditambahkan untuk menghasilkan beton dengan karakteristik tertentu, seperti kemudahan pengerjaan (workability), durabilitas, dan waktu pengerasan. Seperti substansi-substansi mirip batuan lainnya, beton memiliki kuat tekan yang tinggi dan kuat tarik yang sangat rendah. Beton bertulang adalah suatu kombinasi antara beton dan baja dimana tulangan baja berfungsi menyediakan kuat tarik yang tidak dimiliki beton.
Beton adalah suatu campuran yang terdiri dari pasir, kerikil, batu pecah, atau agregat-agregat lain yang dicampur menjadi satu dengan suatu pasta yang terbuat dari semen dan air membentuk suatu massa mirip-batuan. Terkadang, satu atau lebih bahan aditif ditambahkan untuk menghasilkan beton dengan karakteristik tertentu, seperti kemudahan pengerjaan (workability), durabilitas, dan waktu pengerasan. Seperti substansi-substansi mirip batuan lainnya, beton memiliki kuat tekan yang tinggi dan kuat tarik yang sangat rendah. Beton bertulang adalah suatu kombinasi antara beton dan baja dimana tulangan baja berfungsi menyediakan kuat tarik yang tidak dimiliki beton.
Dalam suatu struktur
bangunan beton bertulang khususnya pada kolom akan terjadi momen lentur dan
gaya aksial yang bekerja secara bersama – sama. Momen - momen ini yang
diakibatkan oleh adanya beban eksentris atau adanya gravitasi dapat menimbulkan
beban lateral seperti angin dan gempa atau bisa juga diakibatkan oleh beban
lantai yang tidak seimbang. Maka dari itu, setiap penampang komponen pada
struktur seperti balok dan kolom harus direncanakan kuat terhadap setiap gaya
internal yang terjadi, baik itu momen lentur, gaya aksial, gaya geser maupun
torsi yang timbul sebagai respon struktur tersebut terhadap pengaruh luar.
Defenisi Struktur Beton Bertulang
Beton bertulang adalah suatu bahan material yang terbuat dari beton dan baja tulangan. Kombinasi dari kedua material tersebut menghasilkan bahan bangunan yang mempunyai sifat-sifat yang baik dari masing-masing bahan bangunan tersebut.
Beton mempunyai sifat yang bagus, yaitu mempunya kapasitas tekan yang tinggi. Akan tetapi, beton juga mempunyai sifat yang buruk, yaitu lemah jika dibebani tarik. Sedangkan baja tulangan mempunyai kapasitas yang tinggi terhadap beban tarik, tetapi mempunyai kapasitas tekan yang rendah karena bentuknya yang langsing (akan mudah mengalami tekuk terhadap beban tekan). Namun, dengan menempatkan tulangan dibagian beton yang mengalami tegangan tarik akan mengeliminasi kekurangan dari beton terhadap beban tarik.
Demikian juga bila baja tulangan ditaruh dibagian beton yang mengalami tekan, beton disekeliling tulangan bersama-sama tulangan sengkan akan mencegah tulangan mengalami tekuk. Demikianlah penjelasan tentang mengapa kombinasi dari kedua bahan bangunan ini menghasil bahan bangunan baru yang memiliki sifat-sifat yang lebih baik dibanding sifat-sifat dari masing-masih bahan tersebut sebelum digabungkan. Berikut kita akan paparkan sesuatu yang berhubungan dengan bahan bangunan beton dan tulangan baja.
Beton adalah bahan bangunan yang terbuat dari semen (Portland cement atau semen hidrolik lainnya), pasir atau agregat halus, kerikil atau agregate kasar, air dan dengan atau tanpa bahan tambahan. Kekuatan tekan beton yang digunakan untuk perencanaan ditentukan berdasarkan kekuatan tekan beton pada umur 28 hari. Meskipun sekarang kita dapat menghasilkan beton dengan kekuatan tekan lebih 100 MPa, kekuatan tekan beton yang umum digunakan dalam perencanaan berkisar antara 20 – 40 MPa. Seperti diterangkan sebelumnya, beton mempunyai kekuatan tekan yang tinggi akan tetapi mempunyai kekuatan tarik yang rendah, hanya berkisar antara 8% sampai 15% dari kekuatan tekannya. Untuk mengatasi kelemahan dari bahan beton inilah maka ditemukan bahan bangunan baru dengan menambahkan baja tulangan untuk memperkuat terutama bagian beton yang mengalami tarik.
Baja tulangan yang digunakan untuk perencanaan harus mengunakan baja tulangan ulir/sirip (deformed bar). Sedangkan tulangan polos (plain bar) hanya dapat digunakan untuk tulangan spiral dan tendon, kecuali untuk kasus-kasus tertentu.
Kelebihan dan Kelemahan Beton Bertulang Sebagai Suatu Bahan Struktur
Kelebihan :
Beton bertulang boleh jadi adalah bahan
konstruksi yang paling penting. Beton bertulang digunakan dalam berbagai bentuk
untuk hampir semua struktur, besar maupun kecil – bangunan, jembatan,
perkerasan jalan, bendungan, dindingpenahan tanah, terowongan, jembatan yang
melintasi lembah (viaduct), drainaseserta fasilitas irigasi, tangki, dan
sebagainya. Sukses besar beton sebagai bahan konstruksi yang universal cukup
mudah dipahami jika dilihat dari banyaknya kelebihan yang dimilikinya.
Kelebihan tersebut antara lain :
a) beton memiliki kuat tekan yang relatif lebih tinggi dibandingkan dengan kebanyakan bahan lain.
b) Beton bertulang mempunyai ketahanan yang tinggi terhadap api dan air, bahkan merupakan bahan struktur terbaik untuk bangunan yang banyak bersentuhan dengan air. Pada peristiwa kebakaran dengan intensitas rata-rata, batang-batang struktur dengan ketebalan penutup beton yangmemadai sebagai pelindung tulangan hanya mengalami kerusakan padapermukaannya saja tanpa mengalami keruntuhan.
c) Struktur beton bertulang sangat kokoh.
d) Beton bertulang tidak memerlukan biaya pemeliharaan yang tinggi.
e) Dibandingkan dengan bahan lain, beton memiliki usia layan yang sangat panjang. Dalam kondisi-kondisi normal, struktur beton bertulang dapat digunakan sampai kapan pun tanpa kehilangan kemampuannya untuk menahan beban. Ini dapat dijelaskan dari kenyataannya bahwa kekuatan beton tidak berkurang dengan berjalannya waktu bahkan semakin lama semakin bertambah dalam hitungan tahun, karena lamanya proses pemadatan pasta semen.
f) Beton biasanya merupakan satu-satunya bahan yang ekonomis untuk pondasi tapak, dinding basement, tiang tumpuan jembatan, dan bangunan-bangunan semacam itu.
g) Salah satu ciri khas beton adalah kemampuannya untuk dicetak menjadi bentuk yang sangat beragam, mulai dari pelat, balok, dan kolom yang sederhana sampai atap kubah dan cangkang besar.
h) Di sebagian besar daerah, beton terbuat dari bahan-bahan lokal yang murah (pasir, kerikil, dan air) dan relatif hanya membutuhkan sedikit semen dan tulangan baja, yang mungkin saja harus didatangkan daridaerah lain.
i) Keahlian buruh yang dibutuhkan untuk membangun konstruksi betonbertulang lebih rendah bila dibandingkan dengan bahan lain seperti struktur baja.
Kelemahan
Untuk dapat mengoptimalkan penggunaan beton, perencana harus mengenal dengan baik kelebihannya. Kelemahan-kelemahan beton bertulang tersebut antara lain:
a) Beton mempunyai kuat tarik yang sangat rendah, sehingga memerlukan penggunaan tulangan tarik.
b) Beton bertulang memerlukan bekisting untuk menahan beton tetap di tempatnya sampai beton tersebut mengeras. Selain itu, penopang atau penyangga sementara mungkin diperlukan untuk menjaga agar bekisting tetap berada pada tempatnya, misalnya pada atap, dinding, dan struktur-struktur sejenis, sampai bagian-bagian beton ini cukup kuat untuk menahan beratnya sendiri. Bekisting sangat mahal. Di Amerika Serikat, biaya bekisting berkisar antara sepertiga hingga dua pertiga dari total biaya suatu struktur beton bertulang, dengan nilai sekitar 50%. Sudah jelas bahwa untuk mengurangi biaya dalam pembuatan suatu struktur beton bertulang, hal utama yang harus dilakukan adalah mengurangi biaya bekisting.
c) Rendahnya kekuatan per satuan berat dari beton mengakibatkan beton bertulang menjadi berat. Ini akan sangat berpengaruh pada struktur-struktur bentang-panjang dimana berat beban mati beton yang besar akan sangat mempengaruhi momen lentur.
d) Sifat-sifat beton sangat bervariasi karena bervariasinya proporsi-campuran dan pengadukannya. Selain itu, penuangan dan perawatan beton tidak bisa ditangani seteliti seperti yang dilakukan pada proses produksi material lain seperti struktur baja dan kayu.
Sifat-sifat Beton Bertulang
Pengetahuan yang mendalam tentang sifat-sifat beton bertulang sangat penting sebelum dimulai mendesain struktur beton bertulang. Beberapa sifat-sifat beton bertulang antara lain:
Kuat Tekan
Kuat tekan beton (f’c) dilakukan dengan melakukan uji silinder beton dengan ukuran diameter 150 mm dan tinggi 300 mm. Pada umur 28 hari dengan tingkat pembebanan tertentu. Selama periode 28 hari silinder beton ini biasanya ditempatkan Mdalam sebuah ruangan dengan temperatur tetap dan kelembapan 100%. Meskipun ada beton yang memiliki kuat maksimum 28 hari dari 17 Mpa hingga 70 -140 Mpa, kebanyakan beton memiliki kekuatan pada kisaran 20 Mpa hingga 48 Mpa. Untuk aplikasi yang umum, digunakan beton dengan kekuatan 20 Mpa dan 25 Mpa, sementara untuk konstruksi beton prategang 35 Mpa dan 40 Mpa. Untuk beberapa aplikasi tertentu, seperti untuk kolom pada lantai-lantai bawah suatu bangunan tingkat tinggi, beton dengan kekuatan sampai 60 Mpa telah digunakan dan dapat disediakan oleh perusahaan-perusahaan pembuat beton siap-campur (ready-mix concrete).
Nilai-nilai kuat tekan beton seperti yang diperoleh dari hasil pengujian sangat dipengaruhi oleh ukuran dan bentuk dari elemen uji dan cara pembebanannya. Di banyak Negara, spesimen uji yang digunakan adalah kubus berisi 200 mm. untuk beton-beton uji yang sama, pengujian terhadap silinder-silinder 150 mm x 300 mm menghasilkan kuat tekan yang besarnya hanya sekitar 80% dari nilai yang diperoleh dari pengujian beton uji kubus.
Kekuatan beton bisa beralih dari beton 20 Mpa ke beton 35 Mpa tanpa perlu melakukan penambahan buruh dan semen dalam jumlah yang berlebihan. Perkiraan kenaikan biaya bahan untuk mendapatkan penambahan kekuatan seperti itu adalah 15% sampai 20%. Namun untuk mendapatkan kekuatan beton diatas 35 atau 40 Mpa diperlukan desain campuran beton yang sangat teliti dan perhatian penuh kepada detail-detail seperti pencampuran, penempatan, dan perawatan. Persyaratan ini menyebabkan kenaikan biaya yang relatife lebih besar. Kurva tegangan-regangan pada gambar dibelakang menampilkan hasil yang dicapai dari uji kompresi terhadap sejumlah silinder uji standar berumur 28 hari yang kekuatannya beragam.
Kurva hampir lurus ketika beban ditingkatkan dari niol sampai kira-kira 1/3 - 2/3 kekuatan maksimum beton.
Diatas kurva ini perilaku betonnya nonlinear. Ketidak linearan kurva tegangan-regangan beton pada tegangan yang lebih tinggi ini mengakibatkan beberapa masalah ketika kita melakukan analisis struktural terhadap konstruksi beton karena perilaku konstruksi tersebut juga akan nonlinear pada tegangan-tegangan yang lebih tinggi.
Satu hal penting yang harus diperhatikan adalah kenyataan bahwa berapapun besarnya kekuatan beton, semua beton akan mencapai kekuatatan puncaknya pada regangan sekitar 0,002.
Beton tidak memiliki titik leleh yang pasti, sebaliknya kurva beton akan tetap bergerak mulus hingga tiba di titik kegagalan (point of rupture) pada regangan sekitar 0,003 sampai 0,004.
Banyak pengujian yang telah menunjukkan bahwa kurva-kurva tegangan- regangan untuk silinder-silinder beton hampir identik dengan kurva-kurva serupa untuk sisi balok yang mengalami tekan.
Harus diperhatikan juga bahwa beton berkekuatan lebih rendah lebih daktail daripada beton berkekuatan lebih tinggi – artinya, beton-beton yang lebih lemah akan mengalami regangan yang lebih besar sebelum mengalami kegagalan.
Modulus Elastisitas Statis
a) beton memiliki kuat tekan yang relatif lebih tinggi dibandingkan dengan kebanyakan bahan lain.
b) Beton bertulang mempunyai ketahanan yang tinggi terhadap api dan air, bahkan merupakan bahan struktur terbaik untuk bangunan yang banyak bersentuhan dengan air. Pada peristiwa kebakaran dengan intensitas rata-rata, batang-batang struktur dengan ketebalan penutup beton yangmemadai sebagai pelindung tulangan hanya mengalami kerusakan padapermukaannya saja tanpa mengalami keruntuhan.
c) Struktur beton bertulang sangat kokoh.
d) Beton bertulang tidak memerlukan biaya pemeliharaan yang tinggi.
e) Dibandingkan dengan bahan lain, beton memiliki usia layan yang sangat panjang. Dalam kondisi-kondisi normal, struktur beton bertulang dapat digunakan sampai kapan pun tanpa kehilangan kemampuannya untuk menahan beban. Ini dapat dijelaskan dari kenyataannya bahwa kekuatan beton tidak berkurang dengan berjalannya waktu bahkan semakin lama semakin bertambah dalam hitungan tahun, karena lamanya proses pemadatan pasta semen.
f) Beton biasanya merupakan satu-satunya bahan yang ekonomis untuk pondasi tapak, dinding basement, tiang tumpuan jembatan, dan bangunan-bangunan semacam itu.
g) Salah satu ciri khas beton adalah kemampuannya untuk dicetak menjadi bentuk yang sangat beragam, mulai dari pelat, balok, dan kolom yang sederhana sampai atap kubah dan cangkang besar.
h) Di sebagian besar daerah, beton terbuat dari bahan-bahan lokal yang murah (pasir, kerikil, dan air) dan relatif hanya membutuhkan sedikit semen dan tulangan baja, yang mungkin saja harus didatangkan daridaerah lain.
i) Keahlian buruh yang dibutuhkan untuk membangun konstruksi betonbertulang lebih rendah bila dibandingkan dengan bahan lain seperti struktur baja.
Kelemahan
Untuk dapat mengoptimalkan penggunaan beton, perencana harus mengenal dengan baik kelebihannya. Kelemahan-kelemahan beton bertulang tersebut antara lain:
a) Beton mempunyai kuat tarik yang sangat rendah, sehingga memerlukan penggunaan tulangan tarik.
b) Beton bertulang memerlukan bekisting untuk menahan beton tetap di tempatnya sampai beton tersebut mengeras. Selain itu, penopang atau penyangga sementara mungkin diperlukan untuk menjaga agar bekisting tetap berada pada tempatnya, misalnya pada atap, dinding, dan struktur-struktur sejenis, sampai bagian-bagian beton ini cukup kuat untuk menahan beratnya sendiri. Bekisting sangat mahal. Di Amerika Serikat, biaya bekisting berkisar antara sepertiga hingga dua pertiga dari total biaya suatu struktur beton bertulang, dengan nilai sekitar 50%. Sudah jelas bahwa untuk mengurangi biaya dalam pembuatan suatu struktur beton bertulang, hal utama yang harus dilakukan adalah mengurangi biaya bekisting.
c) Rendahnya kekuatan per satuan berat dari beton mengakibatkan beton bertulang menjadi berat. Ini akan sangat berpengaruh pada struktur-struktur bentang-panjang dimana berat beban mati beton yang besar akan sangat mempengaruhi momen lentur.
d) Sifat-sifat beton sangat bervariasi karena bervariasinya proporsi-campuran dan pengadukannya. Selain itu, penuangan dan perawatan beton tidak bisa ditangani seteliti seperti yang dilakukan pada proses produksi material lain seperti struktur baja dan kayu.
Sifat-sifat Beton Bertulang
Pengetahuan yang mendalam tentang sifat-sifat beton bertulang sangat penting sebelum dimulai mendesain struktur beton bertulang. Beberapa sifat-sifat beton bertulang antara lain:
Kuat Tekan
Kuat tekan beton (f’c) dilakukan dengan melakukan uji silinder beton dengan ukuran diameter 150 mm dan tinggi 300 mm. Pada umur 28 hari dengan tingkat pembebanan tertentu. Selama periode 28 hari silinder beton ini biasanya ditempatkan Mdalam sebuah ruangan dengan temperatur tetap dan kelembapan 100%. Meskipun ada beton yang memiliki kuat maksimum 28 hari dari 17 Mpa hingga 70 -140 Mpa, kebanyakan beton memiliki kekuatan pada kisaran 20 Mpa hingga 48 Mpa. Untuk aplikasi yang umum, digunakan beton dengan kekuatan 20 Mpa dan 25 Mpa, sementara untuk konstruksi beton prategang 35 Mpa dan 40 Mpa. Untuk beberapa aplikasi tertentu, seperti untuk kolom pada lantai-lantai bawah suatu bangunan tingkat tinggi, beton dengan kekuatan sampai 60 Mpa telah digunakan dan dapat disediakan oleh perusahaan-perusahaan pembuat beton siap-campur (ready-mix concrete).
Nilai-nilai kuat tekan beton seperti yang diperoleh dari hasil pengujian sangat dipengaruhi oleh ukuran dan bentuk dari elemen uji dan cara pembebanannya. Di banyak Negara, spesimen uji yang digunakan adalah kubus berisi 200 mm. untuk beton-beton uji yang sama, pengujian terhadap silinder-silinder 150 mm x 300 mm menghasilkan kuat tekan yang besarnya hanya sekitar 80% dari nilai yang diperoleh dari pengujian beton uji kubus.
Kekuatan beton bisa beralih dari beton 20 Mpa ke beton 35 Mpa tanpa perlu melakukan penambahan buruh dan semen dalam jumlah yang berlebihan. Perkiraan kenaikan biaya bahan untuk mendapatkan penambahan kekuatan seperti itu adalah 15% sampai 20%. Namun untuk mendapatkan kekuatan beton diatas 35 atau 40 Mpa diperlukan desain campuran beton yang sangat teliti dan perhatian penuh kepada detail-detail seperti pencampuran, penempatan, dan perawatan. Persyaratan ini menyebabkan kenaikan biaya yang relatife lebih besar. Kurva tegangan-regangan pada gambar dibelakang menampilkan hasil yang dicapai dari uji kompresi terhadap sejumlah silinder uji standar berumur 28 hari yang kekuatannya beragam.
Kurva hampir lurus ketika beban ditingkatkan dari niol sampai kira-kira 1/3 - 2/3 kekuatan maksimum beton.
Diatas kurva ini perilaku betonnya nonlinear. Ketidak linearan kurva tegangan-regangan beton pada tegangan yang lebih tinggi ini mengakibatkan beberapa masalah ketika kita melakukan analisis struktural terhadap konstruksi beton karena perilaku konstruksi tersebut juga akan nonlinear pada tegangan-tegangan yang lebih tinggi.
Satu hal penting yang harus diperhatikan adalah kenyataan bahwa berapapun besarnya kekuatan beton, semua beton akan mencapai kekuatatan puncaknya pada regangan sekitar 0,002.
Beton tidak memiliki titik leleh yang pasti, sebaliknya kurva beton akan tetap bergerak mulus hingga tiba di titik kegagalan (point of rupture) pada regangan sekitar 0,003 sampai 0,004.
Banyak pengujian yang telah menunjukkan bahwa kurva-kurva tegangan- regangan untuk silinder-silinder beton hampir identik dengan kurva-kurva serupa untuk sisi balok yang mengalami tekan.
Harus diperhatikan juga bahwa beton berkekuatan lebih rendah lebih daktail daripada beton berkekuatan lebih tinggi – artinya, beton-beton yang lebih lemah akan mengalami regangan yang lebih besar sebelum mengalami kegagalan.
Modulus Elastisitas Statis
Beton tidak memiliki
modulus elastisitas yang pasti. Nilainya bervariasi
tergantung dari kekuatan beton, umur
beton, jenis pembebanan, dan karakteristik dan perbandingan semen dan agregat.
Sebagai tambahan, ada beberapa defenisi mengenai modulus elastisitas :
a) Modulus awal adalah kemiringan diagram tegangan-regangan pada titik asal dari kurva.
b) Modulus tangen adalah kemiringan dari salah satu tangent (garis singgung) pada kurva tersebut di titik tertentu di sepanjang kurva, misalnya pada 50% dari kekuatan maksimum beton.
c) Kemiringan dari suatu garis yang ditarik dari titik asal kurva ke suatu titik pada kurva tersebut di suatu tempat di antara 25% sampai 50% dari kekuatan tekan maksimumnya disebut Modulus sekan.
d) Modulus yang lain, disebut modulus semu (apparent modulus) atau modulus jangka panjang, ditentukan dengan menggunakan tegangan dan regangan yang diperoleh setelah beban diberikan selama beberapa waktu.
Peraturan ACI menyebutkan bahwa rumus untuk menghitung modulus elastisitas beton yang memiliki berat beton (wc) berkisar dari 1500-2500 kg/m3.
a) Modulus awal adalah kemiringan diagram tegangan-regangan pada titik asal dari kurva.
b) Modulus tangen adalah kemiringan dari salah satu tangent (garis singgung) pada kurva tersebut di titik tertentu di sepanjang kurva, misalnya pada 50% dari kekuatan maksimum beton.
c) Kemiringan dari suatu garis yang ditarik dari titik asal kurva ke suatu titik pada kurva tersebut di suatu tempat di antara 25% sampai 50% dari kekuatan tekan maksimumnya disebut Modulus sekan.
d) Modulus yang lain, disebut modulus semu (apparent modulus) atau modulus jangka panjang, ditentukan dengan menggunakan tegangan dan regangan yang diperoleh setelah beban diberikan selama beberapa waktu.
Peraturan ACI menyebutkan bahwa rumus untuk menghitung modulus elastisitas beton yang memiliki berat beton (wc) berkisar dari 1500-2500 kg/m3.
Dimana :
wc : berat beton (kg/m3)
fc’ : mutu beton (Mpa)
Ec : modulus elastisitas (Mpa)
Modulus Elastisitas Dinamis
Modulus elastisitas dinamis
Modulus elastisitas dinamis, yang berkorespondensi dengan regangan-regangan sesaat yang sangat kecil, biasanya diperoleh dari uji sonik. Nilainya biasanya lebih besar 20%-40% daripada nilai modulus elastisitas statis dan kira-kira sama dengan modulus nilai awal. Modulus elastisitas dinamis ini biasanya dipakai pada analisa struktur dengan beban gempa atau tumbukan
Perbandingan Poisson
Ketika sebuah beton menerima beban tekan, silinder tersebut tidak hanya berkurang tingginya tetapi juga mengalami ekspansi (pemuaian) dalam arah lateral. Perbandingan ekspansi lateral dengan pendekatan longitudinal ini disebut sebagai Perbandingan Poisson(Poisson’s ratio). Nilainya bervariasi mulai dari 0,11 untuk beton mutu tinggi dan 0,21 untuk beton mutu rendah, dengan nilai rata-rata 0,16. Sepertinya tidak ada hubungan langsung antara nilai perbandingan ini dengan nilai-nilai, seperti perbandingan air-semen, lamanya perawatan, ukuran agregat, dan sebagainya. Pada sebagian besar desain beton bertulang, pengaruh dari perbandingan poisson ini tidak terlalu diperhatikan. Namun pengaruh dari perbandingan harus diperhatikan ketika kita menganalisis dan mendesain bendungan busur, terowongan, dan struktur-struktur statis tak tentu lainnya.
Kuat Tarik
Kuat tarik beton bervariasi antara 8% sampai 15% dari kuat tekannya. Alasan utama dari kuat tarik yang kecil ini adalah kenyataan bahwa beton dipenuhi oleh retak-retak halus. Retak-retak ini tidak berpengaruh besar bila beton menerima beban tekan karena beban tekan menyebabkan retak menutup sehingga memungkinkan terjadinya penyaluran tekanan. Jelas ini tidak terjadi bila balok menerima beban
Meskipun biasanya diabaikan dalam perhitungan desain, kuat tarik tetap merupakan sifat penting yang mempengaruhi ukuran beton dan seberapa besar retak yang terjadi. Selain itu, kuat tarik dari batang beton diketahui selalu akan mengurangi jumlah lendutan. (Karena kuat tarik beton tidak besar, hanya sedikit usaha yang dilakukan untuk menghitung modulus elastisitas tarik dari beton. Namun, berdasarkan informasi yang terbatas ini, diperkirakan bahwa nilai modulus elastisitas tarik beton sama dengan modulus elatisitas tekannya.)
Selanjutnya, anda mungkin ingin tahu mengapa beton tidak diasumsikan menahan tegangan tarik yang terjadi pada suatu batang lentur dan baja yang menahannya. Alasannya adalah bahwa beton akan mengalami retak pada regangan tarik yang begitu kecil sehingga tegangan-tegangan rendah yang terdapat pada baja hingga saat itu akan membuat penggunaannya menjadi tidak ekonomis. Kuat tarik beton tidak berbanding lurus dengan kuat tekan ultimitnya fc’. Meskipun demikian, kuat tarik ini diperkirakan berbanding lurus terhadap akar kuadrat dari fc’. Kuat tarik ini cukup sulit untuk diukur dengan beban-beban tarik aksial langsung akibat sulitnya memegang spesimen uji untuk menghindari konsentrasi tegangan dan akibat kesulitan dalam meluruskan beban-beban tersebut. Sebagai akibat dari kendala ini, diciptakanlah dua pengujian yang agak tidak langsung untuk menghitung kuat tarik beton. Keduanya adalah uji modulus keruntuhan dan uji pembelahan silinder. Kuat tarik beton pada waktu mengalami lentur sangat penting ketika kita sedang meninjau retak dan lendutan pada balok. Untuk tujuan ini, kita selama ini menggunakan kuat tarik yang diperoleh dari uji modulus-keruntuhan. Modulus keruntuhan biasanya dihitung dengan cara membebani sebuah balok beton persegi (dengan tumpuan sederhana berjarak 6 m dari as ke as) tanpa-tulangan berukuran 15cm x 15cm x 75cm. hingga runtuh dengan beban terpusat yang besarnya sama pada 1/3 dari titik-titik pada balok tersebut sesuai dengan yang disebutkan dalam ASTM C-78. Beban ini terus ditingkatkan sampai keruntuhan terjadi akibat retak pada bagian balok yang mengalami tarik. Modulus keruntuhannya fr ditentukan kemudian dari rumus lentur. Pada rumus-rumus berikut ini :
Tegangan yang ditentukan dengan cara ini tidak terlalu akurat karena dalam menggunakan rumus lentur kita mengasumsikan beton berada dalam keadaan elastic sempurna dengan tegangan yang berbanding lurus terhadap jarak dari sumbu netral.
Kuat Geser
Melakukan pengujian untuk memperoleh keruntuhan geser yang betul-betul murni tanpa dipengaruhi oleh tegangan-tegangan lain sangatlah sulit. Akibatnya, pengujian kuat geser beton selama bertahun-tahun selalu menghasilkan nilai-nilai leleh yang terletak di antara 1/3 sampai 4/5 dari kuat tekan maksimumnya.
Kurva Tegangan-Regangan
Hubungan tegangan-regangan beton perlu diketahui untuk menurunkan persamaan-persamaan analisis dan desain juga prosedur-prosedur pada struktur beton.
Kolom
Definisi kolom menurut SNI-T15-1991-03 adalah komponen struktur bangunan yang tugas utamanya menyangga beban aksial desak vertikal dengan bagian tinggi yang tidak ditopang paling tidak tiga kali dimensi lateral terkecil. Kolom adalah batang tekan vertikal dari rangka (frame) struktur yang memikul beban dari balok induk maupun balok anak. Kolom meneruskan beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya sampai ke tanah melalui`pondasi.
Keruntuhan pada suatu kolom merupakan kondisi kritis yang dapat menyebabkan runtuhnya (collapse) lantai yang bersangkutan dan juga runtuh total (total collapse) seluruh struktur. Kolom adalah struktur yang mendukung beban dari atap, balok dan berat sendiri yang diteruskan ke pondasi. Secara struktur kolom menerima beban vertical yang besar, selain itu harus mampu menahan beban-beban horizontal bahkan momen atau puntir/torsi akibat pengaruh terjadinya eksentrisitas pembebanan. hal yang perlu diperhatikan adalah tinggi kolom perencanaan, mutu beton dan baja yang digunakan dan eksentrisitas pembebanan yang terjadi.
Balok
Balok adalah bagian struktur yang berfungsi sebagai pendukung beban vertikal dan horizontal. Beban vertikal berupa beban mati dan beban hidup yang diterima plat lantai, berat sendiri balok dan berat dinding penyekat yang di atasnya. Sedangkan beban horizontal berupa beban angin dan gempa. Balok merupakan bagian struktur bangunan yang penting dan bertujuan untuk memikul beban tranversal yang dapat berupa beban lentur, geser maupun torsi. Oleh karena itu perencanaan balok yang efisien, ekonomis dan aman sangat penting untuk suatu struktur bangunan terutama struktur bertingkat tinggi atau struktur berskala besar.
Pengantar Gempa
Kerak bumi terdiri dari beberapa lapisan tektonik keras yang disebut litosfer yang mengapung di atas medium fluida yang lebih lunak yang disebut mantle, sehingga kerak bumi ini dapat bergerak. Teori yang dipakai untuk menerangkan pergerakan-pergerakan kerak bumi tersebut adalah teori perekahan dasar laut (Sea Floor Spreading Theory) yang dikembangkan oleh F. V. Vine dan D. H. Mathews pada tahun 1963 (Irsyam, 2005). Bersatunya masa batu atau pelat satu sama lain dicegah oleh gaya-gaya friksional, apabila tahanan ultimate friksional tercapai karena ada gerakan kontinyu dari fluida dibawahnya dua pelat yang akan bertumbukan satu sama lain akan menimbulkan gerakan tiba-tiba yang bersifat transient yang menyebar dari satu titik kesuatu arah yang disebut gempa bumi. Gempa bumi yang menimbulkan kerusakan yang paling luas adalah gempa tektonik. Gempa bumi tektonik disebabkan oleh terjadinya pergeseran kerak bumi (lithosfer) yang umumnya terjadi didaerah patahan kulit bumi.
Dalam beberapa dekade belakangan, para insinyur struktur mulai mengalami kemajuan yang berarti dalam memahami perilaku struktur terhadap beban gempa. Kemajuan ini dikombinasikan dengan hasil penelitian modern yang membuat para insinyur struktur dapat mendesain suatu struktur yang aman ketika mengalami bebangempa yang besar, selain itu dapat pula mendesain bangunan yang tetap dapat terus beroperasi selama dan setelah gempa terjadi. Struktur suatu bangunan bertingkat tinggi harus dapat memikul beban-beban yang bekerja pada struktur tersebut, diantaranya beban gravitasi dan beban lateral. Beban gravitasi adalah beban mati struktur dan beban hidup, sedangkan yang termasuk beban lateral adalah beban angin dan beban gempa.
Gempa yang bekerja pada suatu struktur menyebabkan struktur tersebut akan mengalami pergerakan secara vertikal maupun secara lateral. Pergerakan tanah tersebut menimbulkan percepatan sehingga struktur yang memiliki massa akan mengalami gaya berdasarkan rumus F = m x a. Namun struktur pada umumnya memiliki faktor keamanan yang cukup dalam menahan gaya vertikal dibandingkan dengan gaya gempa lateral. Gaya gempa vertikal harus diperhitungkan untuk unsur-unsur struktur gedung yang memiliki kepekaan yang tinggi terhadap beban gravitasi seperti balkon, kanopi dan balok kantilever berbentang panjang, balok transfer pada struktur gedung tinggi yang memikul beban gravitasi dari dua atau lebih tingkat diatasnya serta balok beton pratekan berbentang panjang. Sedangkan gaya gempa lateral bekerja pada setiap pusat massa lantai.
Berdasarkan UBC 1997, tujuan desain bangunan tahan gempa adalah untuk mencegah terjadinya kegagalan struktur dan kehilangan korban jiwa, dengan tiga kriteria standar sebagai berikut:
a) Tidak terjadi kerusakan sama sekali pada gempa kecil
b) Ketika terjadi gempa sedang, diperbolehkan terjadi kerusakan arsitektural tapi bukan merupakan kerusakan structural
c) Diperbolehkan terjadinya kerusakan struktural dan non struktural pada gempa kuat, namun kerusakan yang terjadi tidak menyebabkan bangunan runtuh.
Beban gempa nilainya ditentukan oleh 3 hal, yaitu oleh besarnya probabilitas beban itu dilampaui dalam kurun waktu tertentu, oleh tingkat daktilitas struktur yang mengalaminya, dan oleh kekuatan lebih yang terkandung didalam struktur tersebut. Peluang dilampauinya beban nominal tersebut dalam kurun waktu umur gedung 50 tahun adalah 10% dan gempa yang menyebabkannya adalah gempa rencana dengan periode ulang 500 tahun. Tingkat daktilitas struktur gedung dapat ditetapkan sesuai dengan kebutuhan, sedangkan faktor kuat lebih (f1) untuk struktur gedung secara umum nilainya adalah 1,6. Dengan demikian, beban gempa nominal adalah beban akibat pengaruh gempa rencana yang menyebabkan terjadinya pelelehan pertama didalam struktur gedung, kemudian direduksi dengan faktor kuat lebih (f1).
Daktilitas adalah kemampuan suatu struktur gedung untuk mengalami simpangan pasca-elastik yang besar secara berulang kali dan bolak-balik akibat beban gempa diatas beban gempa yang menyebabkan terjadinya pelelehan pertama, sambil mempertahankan kekuatan dan kekakuan yang cukup, sehingga struktur gedung tersebut tetap berdiri, walaupun sudah berada dalam kondisi diambang keruntuhan. Faktor daktilitas struktur gedung (μ) adalah rasio antara simpangan maksimum struktur gedung akibat pengaruh gempa rencana pada saat mencapai kondisi diambang keruntuhan (δmax) dan simpangan struktur pada saat terjadinya sendi plastis ya ng pertama (δy), seperti terlihat pada persamaan di bawah ini:
Untuk μ =1 adalah nilai faktor daktilitas untuk struktur gedung yang berprilaku elastik penuh, seangkan μm adalah nilai faktor daktilitas maksimum yang dapat dikerahkan oleh sistem struktur gedung yang bersangkutan.
Analisis Beban Gempa
Struktur beraturan dapat direncanakan terhadap pembebanan gempa nominal akibat pengaruh gempa rencana dalam arah masing-masing sumbu utama denah nominal statik ekivalen (V) yang terjadi di tingkat dasar dapat dihitung menurut persamaan di bawah ini:
Dimana C1 adalah nilai faktor respon gempa yang didapat dari respon spectra gempa rencana untuk waktu getar alami fundamental T1, Wt adalah berat total gedung termasuk beban hidup yang sesuai, R adalah faktor reduksi gempa, dan I adalah faktor keutamaan. Beban geser dasar nominal V harus dibagikan sepanjang tinggi struktur gedung menjadi beban-beban gempa nominal statik ekivalen Fi yang menangkap pada pusat massa lantai tingkat ke-i menurut persamaan di bawah ini:
Dimana Wi adalah berat lantai tingkat ke-i, termasuk beban hidup yang sesuai, zi adalah ketinggian lantai tingkat ke-i diukur dari taraf penjepitan lateral, sedangkan n adalah nomor lantai tingkat paling atas. Ilustrasi dari hal tersebut dapat dilihat pada gambar berikut :
Apabila rasio antara tinggi struktur gedung dan ukuran denahnya dalam arah pembebanan gempa sama dengan atau melebihi 3, maka 0.1 V harus dianggap sebagai beban horizontal terpusat yang menangkap pada pusat massa lantai tingkat paling atas, sedangkan 0.9 V sisanya harus dibagikan sepanjang tinggi struktur gedung menjadi beban-beban gempa nominal statik ekuivalen.
Respon Spektra
Untuk menentukan pengaruh gempa rencana pada struktur gedung, yaitu berupa beban geser dasar nominal statik ekivalen pada struktur gedung beraturan atau gaya geser dasar nominal sebagai respon dinamik ragam pertama pada struktur gedung tidak beraturan, untuk masing-masing wilayah gempa ditetapkan respon spektra gempa rencana. Respon spektra adalah suatu diagram yang memberi hubungan antara percepatan respon maksimum suatu sistem Satu Derajat Kebebasan (SDK) akibat suatu gempa masukan tertentu, sebagai fungsi dari faktor redaman (dumping) dan waktu getar alami sistem SDK tersebut (T). Bentuk respon spektra yang sesungguhnya menunjukkan suatu fungsi acak yang untuk waktu getar alami (T) meningkat menunjukkan nilai yang mula-mula meningkat dulu sampai suatu nilai maksimum, kemudian turun lagi secara asimtotik mendekati sumbu-T.
Kesimpulan
Beton adalah suatu campuran yang terdiri dari pasir, kerikil, batu pecah, atau agregat-agregat lain yang dicampur menjadi satu dengan suatu pasta yang terbuat dari semen dan air membentuk suatu massa mirip-batuan.
Beton bertulang adalah suatu bahan material yang terbuat dari beton dan baja tulangan.
Kelebihan beton bertulang antara lain, beton memiliki kuat tekan yang relatif lebih tinggi, Beton bertulang mempunyai ketahanan yang tinggi terhadap api dan air, Struktur beton bertulang sangat kokoh, Beton bertulang tidak memerlukan biaya pemeliharaan yang tinggi, memiliki usia layan yang sangat panjang, Beton biasanya merupakan satu-satunya bahan yang ekonomis, kemampuannya untuk dicetak menjadi bentuk yang sangat beragam, membutuhkan sedikit semen dan tulangan baja, serta Keahlian buruh yang dibutuhkan untuk membangun konstruksi beton bertulang lebih rendah.
Kelemahan-kelemahan beton bertulang tersebut antara lain, Beton mempunyai kuat tarik yang sangat rendah, Beton bertulang memerlukan bekisting untuk menahan beton tetap di tempatnya sampai beton tersebut mengeras, Sifat-sifat beton sangat bervariasi karena bervariasinya proporsi-campuran dan pengadukannya, Rendahnya kekuatan per satuan berat dari beton.
Pengetahuan yang mendalam tentang sifat-sifat beton bertulang sangat penting sebelum dimulai mendesain struktur beton bertulang. Beberapa sifat-sifat beton bertulang antara lain, Kuat Tekan, Modulus Elastisitas Statis, Modulus elastisitas dinamis, Perbandingan Poisson, Kuat Tarik, Kuat Geser dan Kurva Tegangan-Regangan.
Saran
Kepada pembaca agar kiranya setelah membaca makalah ini diharapkan mampu mamahami dasar-dasar dari beton bertulang, kalaupun didalam makalah ini terdapat materi yang bertentangan dengan materi sebenarnya agar memberikan koreksi untuk memperbaiki penyusunan makalah yang sangat sederhana ini
Modulus elastisitas dinamis
Modulus elastisitas dinamis, yang berkorespondensi dengan regangan-regangan sesaat yang sangat kecil, biasanya diperoleh dari uji sonik. Nilainya biasanya lebih besar 20%-40% daripada nilai modulus elastisitas statis dan kira-kira sama dengan modulus nilai awal. Modulus elastisitas dinamis ini biasanya dipakai pada analisa struktur dengan beban gempa atau tumbukan
Perbandingan Poisson
Ketika sebuah beton menerima beban tekan, silinder tersebut tidak hanya berkurang tingginya tetapi juga mengalami ekspansi (pemuaian) dalam arah lateral. Perbandingan ekspansi lateral dengan pendekatan longitudinal ini disebut sebagai Perbandingan Poisson(Poisson’s ratio). Nilainya bervariasi mulai dari 0,11 untuk beton mutu tinggi dan 0,21 untuk beton mutu rendah, dengan nilai rata-rata 0,16. Sepertinya tidak ada hubungan langsung antara nilai perbandingan ini dengan nilai-nilai, seperti perbandingan air-semen, lamanya perawatan, ukuran agregat, dan sebagainya. Pada sebagian besar desain beton bertulang, pengaruh dari perbandingan poisson ini tidak terlalu diperhatikan. Namun pengaruh dari perbandingan harus diperhatikan ketika kita menganalisis dan mendesain bendungan busur, terowongan, dan struktur-struktur statis tak tentu lainnya.
Kuat Tarik
Kuat tarik beton bervariasi antara 8% sampai 15% dari kuat tekannya. Alasan utama dari kuat tarik yang kecil ini adalah kenyataan bahwa beton dipenuhi oleh retak-retak halus. Retak-retak ini tidak berpengaruh besar bila beton menerima beban tekan karena beban tekan menyebabkan retak menutup sehingga memungkinkan terjadinya penyaluran tekanan. Jelas ini tidak terjadi bila balok menerima beban
Meskipun biasanya diabaikan dalam perhitungan desain, kuat tarik tetap merupakan sifat penting yang mempengaruhi ukuran beton dan seberapa besar retak yang terjadi. Selain itu, kuat tarik dari batang beton diketahui selalu akan mengurangi jumlah lendutan. (Karena kuat tarik beton tidak besar, hanya sedikit usaha yang dilakukan untuk menghitung modulus elastisitas tarik dari beton. Namun, berdasarkan informasi yang terbatas ini, diperkirakan bahwa nilai modulus elastisitas tarik beton sama dengan modulus elatisitas tekannya.)
Selanjutnya, anda mungkin ingin tahu mengapa beton tidak diasumsikan menahan tegangan tarik yang terjadi pada suatu batang lentur dan baja yang menahannya. Alasannya adalah bahwa beton akan mengalami retak pada regangan tarik yang begitu kecil sehingga tegangan-tegangan rendah yang terdapat pada baja hingga saat itu akan membuat penggunaannya menjadi tidak ekonomis. Kuat tarik beton tidak berbanding lurus dengan kuat tekan ultimitnya fc’. Meskipun demikian, kuat tarik ini diperkirakan berbanding lurus terhadap akar kuadrat dari fc’. Kuat tarik ini cukup sulit untuk diukur dengan beban-beban tarik aksial langsung akibat sulitnya memegang spesimen uji untuk menghindari konsentrasi tegangan dan akibat kesulitan dalam meluruskan beban-beban tersebut. Sebagai akibat dari kendala ini, diciptakanlah dua pengujian yang agak tidak langsung untuk menghitung kuat tarik beton. Keduanya adalah uji modulus keruntuhan dan uji pembelahan silinder. Kuat tarik beton pada waktu mengalami lentur sangat penting ketika kita sedang meninjau retak dan lendutan pada balok. Untuk tujuan ini, kita selama ini menggunakan kuat tarik yang diperoleh dari uji modulus-keruntuhan. Modulus keruntuhan biasanya dihitung dengan cara membebani sebuah balok beton persegi (dengan tumpuan sederhana berjarak 6 m dari as ke as) tanpa-tulangan berukuran 15cm x 15cm x 75cm. hingga runtuh dengan beban terpusat yang besarnya sama pada 1/3 dari titik-titik pada balok tersebut sesuai dengan yang disebutkan dalam ASTM C-78. Beban ini terus ditingkatkan sampai keruntuhan terjadi akibat retak pada bagian balok yang mengalami tarik. Modulus keruntuhannya fr ditentukan kemudian dari rumus lentur. Pada rumus-rumus berikut ini :
Tegangan yang ditentukan dengan cara ini tidak terlalu akurat karena dalam menggunakan rumus lentur kita mengasumsikan beton berada dalam keadaan elastic sempurna dengan tegangan yang berbanding lurus terhadap jarak dari sumbu netral.
Kuat Geser
Melakukan pengujian untuk memperoleh keruntuhan geser yang betul-betul murni tanpa dipengaruhi oleh tegangan-tegangan lain sangatlah sulit. Akibatnya, pengujian kuat geser beton selama bertahun-tahun selalu menghasilkan nilai-nilai leleh yang terletak di antara 1/3 sampai 4/5 dari kuat tekan maksimumnya.
Kurva Tegangan-Regangan
Hubungan tegangan-regangan beton perlu diketahui untuk menurunkan persamaan-persamaan analisis dan desain juga prosedur-prosedur pada struktur beton.
Kolom
Definisi kolom menurut SNI-T15-1991-03 adalah komponen struktur bangunan yang tugas utamanya menyangga beban aksial desak vertikal dengan bagian tinggi yang tidak ditopang paling tidak tiga kali dimensi lateral terkecil. Kolom adalah batang tekan vertikal dari rangka (frame) struktur yang memikul beban dari balok induk maupun balok anak. Kolom meneruskan beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya sampai ke tanah melalui`pondasi.
Keruntuhan pada suatu kolom merupakan kondisi kritis yang dapat menyebabkan runtuhnya (collapse) lantai yang bersangkutan dan juga runtuh total (total collapse) seluruh struktur. Kolom adalah struktur yang mendukung beban dari atap, balok dan berat sendiri yang diteruskan ke pondasi. Secara struktur kolom menerima beban vertical yang besar, selain itu harus mampu menahan beban-beban horizontal bahkan momen atau puntir/torsi akibat pengaruh terjadinya eksentrisitas pembebanan. hal yang perlu diperhatikan adalah tinggi kolom perencanaan, mutu beton dan baja yang digunakan dan eksentrisitas pembebanan yang terjadi.
Balok
Balok adalah bagian struktur yang berfungsi sebagai pendukung beban vertikal dan horizontal. Beban vertikal berupa beban mati dan beban hidup yang diterima plat lantai, berat sendiri balok dan berat dinding penyekat yang di atasnya. Sedangkan beban horizontal berupa beban angin dan gempa. Balok merupakan bagian struktur bangunan yang penting dan bertujuan untuk memikul beban tranversal yang dapat berupa beban lentur, geser maupun torsi. Oleh karena itu perencanaan balok yang efisien, ekonomis dan aman sangat penting untuk suatu struktur bangunan terutama struktur bertingkat tinggi atau struktur berskala besar.
Pengantar Gempa
Kerak bumi terdiri dari beberapa lapisan tektonik keras yang disebut litosfer yang mengapung di atas medium fluida yang lebih lunak yang disebut mantle, sehingga kerak bumi ini dapat bergerak. Teori yang dipakai untuk menerangkan pergerakan-pergerakan kerak bumi tersebut adalah teori perekahan dasar laut (Sea Floor Spreading Theory) yang dikembangkan oleh F. V. Vine dan D. H. Mathews pada tahun 1963 (Irsyam, 2005). Bersatunya masa batu atau pelat satu sama lain dicegah oleh gaya-gaya friksional, apabila tahanan ultimate friksional tercapai karena ada gerakan kontinyu dari fluida dibawahnya dua pelat yang akan bertumbukan satu sama lain akan menimbulkan gerakan tiba-tiba yang bersifat transient yang menyebar dari satu titik kesuatu arah yang disebut gempa bumi. Gempa bumi yang menimbulkan kerusakan yang paling luas adalah gempa tektonik. Gempa bumi tektonik disebabkan oleh terjadinya pergeseran kerak bumi (lithosfer) yang umumnya terjadi didaerah patahan kulit bumi.
Dalam beberapa dekade belakangan, para insinyur struktur mulai mengalami kemajuan yang berarti dalam memahami perilaku struktur terhadap beban gempa. Kemajuan ini dikombinasikan dengan hasil penelitian modern yang membuat para insinyur struktur dapat mendesain suatu struktur yang aman ketika mengalami bebangempa yang besar, selain itu dapat pula mendesain bangunan yang tetap dapat terus beroperasi selama dan setelah gempa terjadi. Struktur suatu bangunan bertingkat tinggi harus dapat memikul beban-beban yang bekerja pada struktur tersebut, diantaranya beban gravitasi dan beban lateral. Beban gravitasi adalah beban mati struktur dan beban hidup, sedangkan yang termasuk beban lateral adalah beban angin dan beban gempa.
Gempa yang bekerja pada suatu struktur menyebabkan struktur tersebut akan mengalami pergerakan secara vertikal maupun secara lateral. Pergerakan tanah tersebut menimbulkan percepatan sehingga struktur yang memiliki massa akan mengalami gaya berdasarkan rumus F = m x a. Namun struktur pada umumnya memiliki faktor keamanan yang cukup dalam menahan gaya vertikal dibandingkan dengan gaya gempa lateral. Gaya gempa vertikal harus diperhitungkan untuk unsur-unsur struktur gedung yang memiliki kepekaan yang tinggi terhadap beban gravitasi seperti balkon, kanopi dan balok kantilever berbentang panjang, balok transfer pada struktur gedung tinggi yang memikul beban gravitasi dari dua atau lebih tingkat diatasnya serta balok beton pratekan berbentang panjang. Sedangkan gaya gempa lateral bekerja pada setiap pusat massa lantai.
Berdasarkan UBC 1997, tujuan desain bangunan tahan gempa adalah untuk mencegah terjadinya kegagalan struktur dan kehilangan korban jiwa, dengan tiga kriteria standar sebagai berikut:
a) Tidak terjadi kerusakan sama sekali pada gempa kecil
b) Ketika terjadi gempa sedang, diperbolehkan terjadi kerusakan arsitektural tapi bukan merupakan kerusakan structural
c) Diperbolehkan terjadinya kerusakan struktural dan non struktural pada gempa kuat, namun kerusakan yang terjadi tidak menyebabkan bangunan runtuh.
Beban gempa nilainya ditentukan oleh 3 hal, yaitu oleh besarnya probabilitas beban itu dilampaui dalam kurun waktu tertentu, oleh tingkat daktilitas struktur yang mengalaminya, dan oleh kekuatan lebih yang terkandung didalam struktur tersebut. Peluang dilampauinya beban nominal tersebut dalam kurun waktu umur gedung 50 tahun adalah 10% dan gempa yang menyebabkannya adalah gempa rencana dengan periode ulang 500 tahun. Tingkat daktilitas struktur gedung dapat ditetapkan sesuai dengan kebutuhan, sedangkan faktor kuat lebih (f1) untuk struktur gedung secara umum nilainya adalah 1,6. Dengan demikian, beban gempa nominal adalah beban akibat pengaruh gempa rencana yang menyebabkan terjadinya pelelehan pertama didalam struktur gedung, kemudian direduksi dengan faktor kuat lebih (f1).
Daktilitas adalah kemampuan suatu struktur gedung untuk mengalami simpangan pasca-elastik yang besar secara berulang kali dan bolak-balik akibat beban gempa diatas beban gempa yang menyebabkan terjadinya pelelehan pertama, sambil mempertahankan kekuatan dan kekakuan yang cukup, sehingga struktur gedung tersebut tetap berdiri, walaupun sudah berada dalam kondisi diambang keruntuhan. Faktor daktilitas struktur gedung (μ) adalah rasio antara simpangan maksimum struktur gedung akibat pengaruh gempa rencana pada saat mencapai kondisi diambang keruntuhan (δmax) dan simpangan struktur pada saat terjadinya sendi plastis ya ng pertama (δy), seperti terlihat pada persamaan di bawah ini:
Untuk μ =1 adalah nilai faktor daktilitas untuk struktur gedung yang berprilaku elastik penuh, seangkan μm adalah nilai faktor daktilitas maksimum yang dapat dikerahkan oleh sistem struktur gedung yang bersangkutan.
Analisis Beban Gempa
Struktur beraturan dapat direncanakan terhadap pembebanan gempa nominal akibat pengaruh gempa rencana dalam arah masing-masing sumbu utama denah nominal statik ekivalen (V) yang terjadi di tingkat dasar dapat dihitung menurut persamaan di bawah ini:
Dimana C1 adalah nilai faktor respon gempa yang didapat dari respon spectra gempa rencana untuk waktu getar alami fundamental T1, Wt adalah berat total gedung termasuk beban hidup yang sesuai, R adalah faktor reduksi gempa, dan I adalah faktor keutamaan. Beban geser dasar nominal V harus dibagikan sepanjang tinggi struktur gedung menjadi beban-beban gempa nominal statik ekivalen Fi yang menangkap pada pusat massa lantai tingkat ke-i menurut persamaan di bawah ini:
Dimana Wi adalah berat lantai tingkat ke-i, termasuk beban hidup yang sesuai, zi adalah ketinggian lantai tingkat ke-i diukur dari taraf penjepitan lateral, sedangkan n adalah nomor lantai tingkat paling atas. Ilustrasi dari hal tersebut dapat dilihat pada gambar berikut :
Apabila rasio antara tinggi struktur gedung dan ukuran denahnya dalam arah pembebanan gempa sama dengan atau melebihi 3, maka 0.1 V harus dianggap sebagai beban horizontal terpusat yang menangkap pada pusat massa lantai tingkat paling atas, sedangkan 0.9 V sisanya harus dibagikan sepanjang tinggi struktur gedung menjadi beban-beban gempa nominal statik ekuivalen.
Respon Spektra
Untuk menentukan pengaruh gempa rencana pada struktur gedung, yaitu berupa beban geser dasar nominal statik ekivalen pada struktur gedung beraturan atau gaya geser dasar nominal sebagai respon dinamik ragam pertama pada struktur gedung tidak beraturan, untuk masing-masing wilayah gempa ditetapkan respon spektra gempa rencana. Respon spektra adalah suatu diagram yang memberi hubungan antara percepatan respon maksimum suatu sistem Satu Derajat Kebebasan (SDK) akibat suatu gempa masukan tertentu, sebagai fungsi dari faktor redaman (dumping) dan waktu getar alami sistem SDK tersebut (T). Bentuk respon spektra yang sesungguhnya menunjukkan suatu fungsi acak yang untuk waktu getar alami (T) meningkat menunjukkan nilai yang mula-mula meningkat dulu sampai suatu nilai maksimum, kemudian turun lagi secara asimtotik mendekati sumbu-T.
Kesimpulan
Beton adalah suatu campuran yang terdiri dari pasir, kerikil, batu pecah, atau agregat-agregat lain yang dicampur menjadi satu dengan suatu pasta yang terbuat dari semen dan air membentuk suatu massa mirip-batuan.
Beton bertulang adalah suatu bahan material yang terbuat dari beton dan baja tulangan.
Kelebihan beton bertulang antara lain, beton memiliki kuat tekan yang relatif lebih tinggi, Beton bertulang mempunyai ketahanan yang tinggi terhadap api dan air, Struktur beton bertulang sangat kokoh, Beton bertulang tidak memerlukan biaya pemeliharaan yang tinggi, memiliki usia layan yang sangat panjang, Beton biasanya merupakan satu-satunya bahan yang ekonomis, kemampuannya untuk dicetak menjadi bentuk yang sangat beragam, membutuhkan sedikit semen dan tulangan baja, serta Keahlian buruh yang dibutuhkan untuk membangun konstruksi beton bertulang lebih rendah.
Kelemahan-kelemahan beton bertulang tersebut antara lain, Beton mempunyai kuat tarik yang sangat rendah, Beton bertulang memerlukan bekisting untuk menahan beton tetap di tempatnya sampai beton tersebut mengeras, Sifat-sifat beton sangat bervariasi karena bervariasinya proporsi-campuran dan pengadukannya, Rendahnya kekuatan per satuan berat dari beton.
Pengetahuan yang mendalam tentang sifat-sifat beton bertulang sangat penting sebelum dimulai mendesain struktur beton bertulang. Beberapa sifat-sifat beton bertulang antara lain, Kuat Tekan, Modulus Elastisitas Statis, Modulus elastisitas dinamis, Perbandingan Poisson, Kuat Tarik, Kuat Geser dan Kurva Tegangan-Regangan.
Saran
Kepada pembaca agar kiranya setelah membaca makalah ini diharapkan mampu mamahami dasar-dasar dari beton bertulang, kalaupun didalam makalah ini terdapat materi yang bertentangan dengan materi sebenarnya agar memberikan koreksi untuk memperbaiki penyusunan makalah yang sangat sederhana ini
DAFTAR PUSTAKA
http://www.linkpdf.com/ebookviewer.php?url=http://repository.usu.ac.id/bitstream/123456789/21076/3/Chapter%20II.pdf
DOWNLOAD FILE DISINI